If it's not what You are looking for type in the equation solver your own equation and let us solve it.
49m^2-28m=0
a = 49; b = -28; c = 0;
Δ = b2-4ac
Δ = -282-4·49·0
Δ = 784
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{784}=28$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-28)-28}{2*49}=\frac{0}{98} =0 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-28)+28}{2*49}=\frac{56}{98} =4/7 $
| x+8/10=x-9/4 | | -8x=1x+18 | | 27+6x=9x+9 | | a+8a+18=90 | | 4x-3=2×+15 | | 1m=20=11m-6 | | 5x-8=11x | | 4m^2-20m+16=0 | | 3g+6+2g=26 | | 24x=30-6x | | 150=5x+30 | | 2x+3=-4x | | 5^x^2=-15+8x | | 5/x-3/4=1/2 | | 4p+2p+6=20 | | 2x+12=5-5x | | 8(4x-4)=16x-32 | | (1200+x)-0.15(1200+x)=1800 | | 5h+2=12 | | 8x+4=-1 | | 6+2m=20 | | 8(1+5x)-5=73+5x | | 12+4d=2d | | n/4–3=3 | | n/4–3= 3 | | n2+-4n=-5 | | 8(1+5x)=73+5x | | 4+3m=20 | | 4(x-3)=2(x-6)+6x | | -39=-(2+4m)-5(1-7m) | | -10c+3=7 | | 2x/5+1=7. |